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ARTICLE INFO ABSTRACT
Keywords: Bike lanes are a critical element of urban infrastructure that promote cycling and support sus-
Bicycle lanes tainable transportation goals. Effective planning and evaluation require comprehensive inventory

Computer vision
Multimodal

Street view imagery
Satellite imagery
Classification

datasets that both identify the locations of bike lanes and classify their types. However, existing
data collection is limited by inconsistent municipal documentation practices and resource con-
straints. This paper introduces a computer vision-based approach for the automated detection
and classification of bike lanes using publicly available multimodal imagery. Each data sample
integrates two street view images, captured from opposite directions, with a corresponding sat-
ellite image, enabling complementary perspectives. This approach allows the model to reliably
detect bike lane presence and distinguish between designated (marked lanes without physical
barriers) and protected (lanes separated from traffic by physical barriers) types. To optimize
performance, we conduct ablation experiments across three architectural dimensions: stage of
modality concatenation, fusion strategy, and label structure. We also construct a training dataset
using Google Street View and satellite imagery from 28 major U.S. cities to ensure broad appli-
cability. Applying the model to over 1000 road segments in Atlanta, Georgia, we demonstrate its
scalability and accuracy in a real-world urban setting. By providing an automated, transferable
method for developing bike lane inventories, this research addresses a critical gap in infra-
structure documentation and supports more effective planning of bicycle networks.

1. Introduction

Urban streets in most major U.S. cities have been designed to prioritize vehicular traffic, often at the expense of infrastructure for
non-motorized transportation modes. Despite increasing awareness of the health, environmental, and mobility benefits of active
transportation, and increasing efforts to promote bicycle use, cities continue to struggle with a low share of bicycle modes (Handy
etal., 2014; Yang et al., 2021). This persistent challenge is largely driven by safety concerns and inadequate infrastructure (Dill, 2009;
Hull and O’Holleran, 2014). In urban areas, these risks are amplified by high traffic volumes and limited bicycle facilities, many of
which are poorly maintained or entirely absent (Buehler and Dill, 2016).

Transportation agencies and planners have invested in expanding bicycle infrastructure, but planning, prioritization, and evalu-
ation efforts remain constrained by the lack of spatial data documenting where bike lanes are located and what types have been
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implemented. Knowing the location of existing lanes is critical for creating continuous and connected networks, since gaps or dis-
continuities can discourage cycling and undermine safety (Caulfield et al., 2012; Pucher et al., 2010). Equally important is dis-
tinguishing between types of bike lanes, which differ considerably in their functionality and safety benefits. While designated lanes
provide only painted separation from vehicles, protected lanes incorporate physical barriers that offer substantially greater security
(Hwang and Guhathakurta, 2023). Comprehensive and reliable data on both the location and type of lanes is therefore fundamental to
developing safe, connected, and effective cycling networks.

Recent advances in computer vision (CV) have enabled automated extraction of urban features from imagery, opening new op-
portunities for infrastructure inventory. However, bike lane detection and classification remain underdeveloped because of their small
spatial footprint relative to roadways, variability in appearance, and frequent occlusion in imagery (Antwi et al., 2024; Ito and Biljecki,
2021). For instance, in street view images, bike lanes may be obstructed by parked cars, vegetation, or construction, while in satellite
imagery they may be obscured by shadows or tree cover. Similar issues have been observed with other pedestrian facilities, such as
sidewalks and crosswalks, where occlusion often results in omission or misclassification of features. Multimodal imagery analysis
addresses these limitations by integrating complementary perspectives from satellite and street view imagery (Dong et al., 2020; Shen
et al., 2018). Studies of pedestrian infrastructure have shown that multimodal approaches yield significantly higher accuracy than
single-modality models, especially under challenging conditions such as dense tree cover or heavy shadowing (Mattyus et al., 2016;
Ning et al., 2022; Zhang et al., 2025). Yet, despite these promising findings, bike lane detection and classification have not been
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Fig. 1. Overview of model configuration dimensions for multimodal bike lane classification.
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systematically examined using multimodal methods.

This study addresses this gap by developing a multimodal imagery analysis framework for classifying bike lane infrastructure into
three categories: no bike lane, designated bike lane, and protected bike lane. Each data sample combines two street view images,
captured from opposite directions, with a corresponding satellite image. Drawing on insights from the CV literature, we evaluate six
alternative model architectures that vary across three dimensions: stage of modality concatenation, fusion strategy (feature-level
versus decision-level), and label structure (flat versus hierarchical). Through systematic benchmarking these models (Fig. 1), we
identify the most effective configuration and provide a framework that can be generalized for cities seeking to build comprehensive
bike lane inventories. Another key contribution of this work is its reliance solely on publicly available imagery, making the approach
scalable and transferable to cities lacking high-resolution or proprietary datasets. The findings offer practical insights into how
multimodal image-based classification can support infrastructure monitoring and active transportation planning at scale.

2. Related work
2.1. Detection of street infrastructure in urban planning

The adoption of CV in urban planning has enabled cost-effective detection and classification of diverse street elements such as
crosswalks, buildings, and vehicular lanes (Antwi et al., 2024; Hoang et al., 2019; Hoffmann et al., 2019; Kang et al., 2018; Lieu and
Guhathakurta, 2025; Luttrell et al., 2024). In the context of bike infrastructure, however, the key task for planners extends beyond
mere detection to classification, specifically distinguishing between designated (paint-only) and protected (physically separated)
lanes. This distinction is well established in transportation research, as the type and quality of bicycle facilities strongly influence
perceived safety and comfort (Hull and O’Holleran, 2014; Jones, 2012). Protected lanes, in particular, have been shown to significantly
increase perceived safety and encourage cycling (Clark et al., 2019; Aldred and Dales, 2017). The distinction also carries practical
implications for downstream applications such as low-stress bicycle network modeling. For instance, Hwang and Guhathakurta (2023)
incorporated facility type into a simulation-based route choice model and found that protected bike lanes can reduce estimated traffic
stress by up to 75 %, compared to 65 % for buffered lanes and 50 % for striped lanes.

Despite the importance of this distinction, most existing CV studies focus primarily on the detection of bicycle lanes rather than
their type. These efforts have typically utilized single imagery sources, such as high-resolution aerial imagery to support transportation
agencies (Antwi et al., 2025) or dashboard camera video for urban livability assessments (Agulto et al., 2023). A notable exception is
Ding et al. (2021), who used crowdsourced street view imagery to classify bikeways into functional categories such as segregated and
shared lanes for developing a bicycle routing service. While this work underscored the value of automated classification for practical
applications, its reliance on a single modality (i.e., street view imagery) made it vulnerable to occlusions and incomplete visual
information.

These challenges are not unique to bicycle infrastructure studies but persist in urban street element detection research, which often
relies on a single imagery source, typically either satellite or street view imagery (Fang et al., 2022; Hosseini et al., 2022; Liu et al.,
2023; Singh et al., 2024). This single-modality approach, however, introduces limitations stemming from the inherent constraints of
each data type. Street view imagery provides fine-grained detail suitable for detecting markings, signage, and lane demarcations, but is
frequently hindered by occlusions from parked vehicles or vegetation (Lieu and Guhathakurta, 2025). In contrast, satellite imagery
offers broader spatial context and captures the continuity of road layouts, which is essential for network-level analysis. However,
satellite images are often affected by occlusion from tree canopies, shadows, or other objects, as well as inconsistent lighting conditions
that limit classification accuracy (Hosseini et al., 2022; Senlet and Elgammal, 2012).

To address these limitations, recent research has turned toward multimodal imagery fusion, which integrates satellite and street-
level data to leverage their complementary strengths (Dong et al., 2020; Mattyus et al., 2016; Ning et al., 2022; Zhang et al., 2025). For
example, Luttrell (2024) developed a “dual-perspective prediction model” for detecting crosswalks, combining aerial and street view
images of the same location. This approach significantly improved performance under conditions of heavy occlusion, increasing ac-
curacy by 49 % compared to the aerial-only model. Similarly, Cao et al. (2018) demonstrated the effectiveness of multimodal inte-
gration for urban land-use classification by combining aerial imagery with spatially interpolated features derived from street view
data. Their study highlighted how ground-level perspectives can resolve ambiguities that overhead views alone often misclassify.

Despite these advances, no studies to date have applied multimodal imagery analysis specifically to the detection and classification
of bike lanes. As a result, there is no established guidance on how best to integrate satellite and street view imagery for this task, nor on
the relative effectiveness of different architectural strategies for distinguishing between designated and protected lanes. Furthermore,
much of the existing research on related street elements relies on proprietary or high-resolution aerial imagery that is not publicly
accessible, which limits scalability and real-world adoption. Consequently, urban planners currently lack robust and generalizable
tools for evaluating not only the presence but also the types of cycling infrastructure, constraining their ability to develop continuous,
safe, and effective bike networks.

2.2. Model architectural dimensions

To effectively utilize multimodal imagery for bike lane classification, three key architectural configurations require investigation:
the stage at which modalities are concatenated, the fusion level, and the label structure. The computer vision literature remains
inconclusive on the optimal approach for combining different data sources, largely due to the heterogeneity in perspective, geometry,
and visual content across modalities. A systematic exploration of these dimensions is therefore critical to understand how best to
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integrate complementary information for this task.

Concatenation stage refers to when representations from different modalities are combined in the network. Early-stage concate-
nates raw inputs before feature extraction, mid-stage merges latent embeddings from separate feature extractors at intermediate
layers, and late-stage keeps modalities fully separate until their features or predictions are integrated. Recent studies show late-stage
strategies often employ parallel network branches that process each modality independently before combining them using sophisti-
cated feature fusion modules (Guo et al., 2024a; Zhao et al., 2023). This approach allows for the integration of distinct feature types,
such as combining global context from satellite imagery with dynamic local details from street-view data to identify traffic accident
hotspots or fusing complementary information from different views to improve remote sensing scene classification. Mid-stage is widely
favored for its balance between modularity and joint representation learning (Guo et al., 2024b). Studies using mid-stage concate-
nation typically deploy separate feature extractors for each modality and integrate latent features at an intermediate layer for joint
training (Fan et al., 2022; Luo et al., 2024). This approach has also demonstrated superior performance in fine-grained land use
classification and urban scene understanding tasks due to its capacity to retain modality-specific strengths while enabling cross-modal
synergy.

Fusion level refers to how modalities are integrated once their features are extracted. While concatenation timing determines when
fusion occurs in the processing pipeline, fusion level specifies how deep in the representation hierarchy the integration takes place:
feature-level fusion or decision-level fusion. Feature-level fusion combines latent representations (feature vectors) to learn a joint
representation, which is effective for capturing cross-modal interactions. Studies have employed feature-level fusion to integrate
complementary information by fusing image-based and auxiliary inputs such as digital surface models, thermal, or infrared data at the
feature fusion stage (Cao et al., 2018; Filho et al., 2023; Li et al., 2024; Workman et al., 2017). However, this approach may struggle
with highly dissimilar geometries like aerial and street views, where feature misalignment can degrade performance (Hoffmann et al.,
2019). On the other hand, decision-level fusion combines outputs of independently processed modalities, such as their class proba-
bilities or final predictions, to make a final decision. This approach often uses ensemble methods and can prioritize the more confident
modality, offering robustness with noisy or incomplete data. Implementations include model blending, which averages the probability
outputs of a diverse ensemble of models, and weighted voting, where the “vote” of each classifier is weighted by its accuracy on specific
classes (Hoffmann et al., 2019; Shen et al., 2018). A practical application of this is found in urban feature detection, where a
dual-perspective method was developed to identify occluded crosswalks by combining the class probabilities from two separate models
(i.e., one trained on aerial-view imagery and the other on street-view imagery) using a soft voting function to produce a more robust
final prediction (Zhang et al., 2025).

The label structure defines how target classes are organized, typically as either flat or hierarchical. A flat structure assigns each
instance to a single, mutually exclusive category. It is well-suited for classification tasks with broad, clearly defined categories and has
been used to distinguish building functions such as commercial, residential, public, and industrial types by leveraging decision-level
fusion of aerial and street view images (Hoffmann et al., 2019), as well as for pixel-wise semantic segmentation using infrared and DSM
imagery (Audebert et al., 2017). In contrast, hierarchical label structures organize categories across multiple levels, capturing nested
or context-dependent relationships. Examples include using unmanned aerial vehicle imagery and DSM with fuzzy logic to refine urban
land use and land cover classification (Gibril et al., 2020; Shackelford and Davis, 2003).

3. Methods and data

Building on the architectural dimensions identified in section. 2.2, we systematically evaluate six multimodal models that vary
along three axes: (1) stage of modality concatenation, (2) fusion level, and (3) label structure. The objective of this methodological
design is not to re-define these concepts but to operationalize them for the task of bike lane classification and to assess their relative
effectiveness in an applied urban context.

To maintain comparability across all experiments, we employ the Swin Transformer (Swin-S) as the backbone feature extractor for
every model. The Swin-S is pretrained on ImageNet and selected for its ability to capture hierarchical feature representations and to
model long-range spatial dependencies more effectively than conventional convolutional networks. We adopt a transfer learning
approach, freezing the early layers of the backbone and fine-tuning only the last two stages together with a newly added classification
head. This strategy leverages pretrained knowledge while allowing the models to adapt to the specific task of bike lane classification,
ensuring that differences in performance can be attributed to architectural variations rather than discrepancies in feature extraction
capacity.

The inputs to the models consist of three co-located RGB images: two street view images captured from opposite directions and one

Table 1
Model configurations across concatenation stage, fusion level, and label structure.
Model Concatenation stage Fusion level Label structure
1 Late Feature-level Flat
2 Mid Feature-level Flat
3 Late Feature-level Hierarchical
4 Mid Feature-level Hierarchical
5 Late Decision-level Flat
6 Late Decision-level Hierarchical
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satellite image of the same location. All images are resized to 384 x 384 pixels and geographically paired to ensure consistency across
modalities. Additional details on the training dataset are provided in Section 3.2, while the training configuration details are described
in Appendix A. Moreover, because model performance can vary across runs due to the stochastic nature of weight initialization, data
shuffling, and optimization dynamics, we repeat training with five different random seeds for each model to obtain more robust and
reliable performance estimates.

3.1. Model configurations across architectural dimensions

There are six different models spanning three architectural dimensions (Table 1). The first dimension concerns the stage of
concatenation, where we implement both mid-stage and late-stage strategies. In the mid-stage concatenation setting, the two street
view images are each passed through independent Swin-S backbones to generate latent feature embeddings (Fig. 2). These embeddings
are concatenated and processed through a projection block composed of fully connected layers, producing a unified ground-level
representation. The satellite image is also encoded through its own Swin-S backbone to generate a satellite feature embedding. The
ground-level representation and the satellite embedding are then concatenated and passed through an additional fusion layer and the
final classification head. This design ensures early interaction between the two street-level perspectives while deferring integration
with aerial context until after each modality has been independently processed through its backbone.

In the late-stage concatenation setting, all three images are independently processed by parallel Swin backbones. The resulting
features remain separate until the final stage of the model. At this point, we investigate two fusion levels: feature-level and decision-
level (Fig. 3). For feature-level fusion, we extract latent features from each modality after their respective Swin backbones, concatenate
these vectors along the feature dimension, and pass the combined embedding through a shared fully connected projection head.
Regarding the decision-level fusion setting, each modality’s extracted features are independently passed through a classification head
to produce logits. These logits are then aggregated to produce a final prediction. We implemented and tested two ensemble strategies
for this aggregation: (1) an element-wise max pooling, where the maximum value across the three modality logits is selected; and (2) a
learnable weighted average, where modality-specific weights are optimized during training using softmax normalization. The
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Fig. 2. Mid-stage concatenation: Feature-level fusion only. (SV = street view imagery; SAT = satellite imagery).
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Fig. 3. Late-stage concatenation: Feature-level (left) and decision-level (right) fusion.

weighted strategy consistently outperformed max pooling, and we therefore adopt it for the decision-level fusion models. We do not
consider combinations of mid-stage concatenation with decision-level fusion, as concatenation of features at the mid-stage inherently
prevents independent classification pathways. Overall, the distinction between mid- and late-stage concatenation reflects alternative
assumptions about the most effective integration point for multimodal context.

Finally, we evaluate two label structures. The flat label structure treats the task as a single-stage, three-class classification problem.
Each sample is assigned one of the mutually exclusive categories: no bike lane, designated bike lane, or protected bike lane. In contrast,
the hierarchical label structure decomposes the classification task into two sequential binary decisions. The first stage determines
whether a bike lane is present (i.e., no bike lane vs. any bike lane). If present, the second stage classifies it as either designated or
protected. This structure is operationalized through two stacked heads in the model: the first head outputs logits for the presence
detection, and the second head is conditionally activated to distinguish between the two bike lane types.

3.1.1. Data

To construct a publicly accessible and geographically diverse dataset for bike lane classification, we identified candidate road
segments across 28 major U.S. cities (listed in Appendix B) using OpenStreetMap (OSM). Within the OSM schema, bicycle infra-
structure is annotated using the cycleway key, where segments labeled as ‘cycleway = lane’ represent bike lanes that are part of the
roadway and typically separated from vehicular traffic by painted markings. While segments labeled as ‘cycleway = track’ denote
physically separated bike lanes with barriers such as curbs or bollards. From these tagged segments, we randomly sampled road lo-
cations across both categories. For each sampled segment, we extracted the geographic midpoint and collected three complementary
images: one satellite image and two opposing street-view images.

Satellite images were collected using the Google Maps Static API at a zoom level of 21, with each 640 x 640-pixel image centered on
the target location. Using the Google Street View Static API, we captured two street view images per location from opposite directions
along the roadway. Street view images were captured using a 120-degree field of view with a pitch of —30° and retrieved at a 640 x
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640-pixel resolution to maintain consistency with the corresponding satellite imagery.

Following image collection, we conducted manual annotation to verify and refine labels through visual inspection of each image
set. Our annotation process focused on identifying visual evidence of bike lane infrastructure and classifying locations into three
categories: no bike lanes, designated bike lanes, and protected bike lanes. For designated bike lanes, we identified six recurring visual
patterns that indicate their presence (Fig. 4). These lanes typically run along road edges and are characterized by specific pavement
markings following the distinct configurations. The most common involves dual parallel white lines delineating bike lane boundaries,
with some variations incorporating diagonal hatching or chevron patterns between solid lines. A third pattern positions the bike lane
between the travel lane and parked cars, using similar dual solid line markings. The remaining patterns employ single solid outer
boundary lines combined with various visual reinforcements, including colored pavement, painted bicycle symbol, and closely spaced
dashed bulffer lines that are shorter and more densely packed than standard vehicle lane separators.

Protected bike lanes are distinguished from designated lanes by continuous physical barriers. Our dataset revealed two predom-
inant configurations: raised infrastructure including concrete curbs or raised medians creating vertical separation, and on-street
parking serving as a buffer between cyclists and moving traffic (Fig. 5). We excluded marginal physical elements such as occa-
sional poles or small intermittent curbs from the protected category, classifying such infrastructure as designated bike lanes due to
insufficient continuous physical separation.

To ensure balanced classification, we included randomly selected locations with no visible bike lane infrastructure in the same 28
cities. These locations were sampled from OSM road segments lacking cycleway annotation and manually verified for absence of
relevant markings or barriers. The completed dataset encompasses 1800 unique street segments: 1036 locations with no bike lanes,
526 with designated bike lanes, and 238 with protected bike lanes. With three images per location, the dataset contains 5400 total
images. For model training, we split each label’s dataset into training and validation sets using a 7:3 ratio and upsampled the training
datasets for protected and designated bike lane classes due to class imbalance.

4. Results
4.1. Comparison of unimodal and multimodal approaches

Before presenting the evaluation of the six multimodal model configurations, we first compare the multimodal approach against
unimodal baselines that use either satellite imagery or street view imagery alone. For a fair comparison, we follow the same training
configurations and backbone architecture as in the multimodal experiments. The unimodal satellite model requires only a single image
and is therefore implemented with feature-level fusion under both flat and hierarchical label structures. The unimodal street view
model requires two images with different headings and is evaluated across the two architectural dimensions described in Section 2.2,
namely fusion level and label structure.

Table 2 reports the average performance of the three approaches—multimodal imagery, unimodal satellite, and unimodal street
view—based on mean accuracy, macro-averaged precision, recall, and F1-score across five runs with different random seeds. Detailed

Fig. 4. Visual patterns of designated bike lanes. Each case shows: schematic diagram, street view, and satellite view of different bike lane
configurations.
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Fig. 5. Visual patterns of protected bike lanes.

results for each unimodal configuration are provided in Appendix C, while performance for the multimodal variants is reported in
Table 3.

The comparison confirms that multimodal integration yields a performance gain relative to using either imagery source alone.
While the street view-only model performs substantially better than the satellite-only model, which reflects the importance of ground-
level detail for identifying lane markings and protective features, the multimodal model achieves the highest overall accuracy and
other metrics. These findings demonstrate that combining complementary perspectives enhances classification robustness, which
aligns with prior studies showing that dual perspective models outperform single-modality approaches in urban feature detection
(Luttrell et al., 2024; Ning et al., 2022; Zhang et al., 2025).

4.2. Model evaluation

Table 3 presents the performance of the six model configurations, reported as the mean and standard deviation of accuracy, macro-
averaged precision, recall, and F1-score across five training runs with different random seeds. Per-class performance metrics for each
model are described in Appendix D. Overall, Model 6, which combines late-stage concatenation, decision-level fusion, and hierarchical
label structure, achieved optimal performance with the highest accuracy (0.886), F1-score (0.855), and precision (0.870). These re-
sults indicate that both the fusion strategy and the hierarchical label structure meaningfully contribute to improved classification
performance.

Model 5, which shares the same fusion and concatenation design but uses a flat label structure, demonstrated superior performance
with an F1-score of 0.841 and accuracy of 0.876 compared to all configurations except Model 6. This result suggests that decision-level
fusion offers consistent benefits regardless of label structure, though integration with a hierarchical design may slightly enhance
accuracy. The hierarchical model’s decomposition into two binary tasks (bike lane detection followed by type classification) may
enable finer-grained learning, particularly when classes are visually similar.

Late-stage concatenation consistently outperformed mid-stage concatenation across all metrics. For example, Model 1 (late-stage,
feature-level, flat) outperformed Model 2 (mid-stage, feature-level, flat) in both accuracy and F1l-score. A similar trend is observed
between Model 3 and Model 4. This finding supports the hypothesis that allowing each modality to be processed independently before
integration yields more informative and specialized feature representations.

Fusion level also plays an important role. Models using decision-level fusion (Models 5 and 6) marginally outperform those using
feature-level fusion (Models 1 and 3) in terms of both accuracy and precision. This suggests that aggregating predictions from inde-
pendently trained classifiers allows the model to balance modality contributions more adaptively and reduce sensitivity to noisy or
misaligned input. In particular, Model 6 incorporates a learnable weighted fusion mechanism, where modality-specific weights are
optimized during training to reflect the relative contribution of each modality to classification. The final weights learned were 0.3216
for Street View 1, 0.3220 for Street View 2, and 0.3564 for satellite imagery. These values indicate a modest preference for satellite
imagery, likely due to its superior ability to capture spatial layout and broader contextual cues, while still maintaining balanced
contributions from both ground-level views.

4.2.1. Application to Atlanta Roads

To assess the practical utility of our best-performing model (Model 6: late-stage, decision-level fusion with hierarchical structure),
we applied it to a real-world dataset of road segments in Atlanta, Georgia. Rather than including all city roads, we focused on segments
prioritized for Complete Street design under the Complete Streets Policy Guideline proposed by the regional planning agency for the
Atlanta region (Atlanta Regional Commission, 2019), which promotes multimodal infrastructure and the development of bike lanes.
Following the guideline, we calculated a priority score for each census block group based on estimated walking and bicycling demand
and propensity, identified arterial road segments intersecting high-priority areas, and selected those exceeding 100 m in length within

Table 2

Average performance of unimodal versus multimodal models.
Model Accuracy Precision Recall F1
Unimodal - satellite 0.792 0.764 0.746 0.748
Unimodal - street view 0.851 0.835 0.833 0.826
Multimodal 0.863 0.836 0.829 0.829




S.J. Lieu et al.

Table 3

Remote Sensing Applications: Society and Environment 41 (2026) 101817

Performance comparison of the six model configurations. Metrics are reported as mean values with standard deviations in parentheses, averaged over
five independent training runs with different random seeds.

Model Accuracy Precision Recall F1

1 0.872 (0.021) 0.851 (0.034) 0.846 (0.017) 0.846 (0.022)
2 0.829 (0.020) 0.794 (0.026) 0.790 (0.024) 0.785 (0.026)
3 0.872 (0.025) 0.845 (0.042) 0.844 (0.029) 0.842 (0.036)
4 0.845 (0.013) 0.804 (0.024) 0.817 (0.021) 0.808 (0.019)
5 0.876 (0.021) 0.853 (0.033) 0.834 (0.030) 0.841 (0.030)
6 0.886 (0.017) 0.870 (0.023) 0.845 (0.026) 0.855 (0.019)

the top 10 % of the overall demand distribution. This process resulted in 1002 prioritized segments.

For each road segment, we collected three images using the same protocol as the training set. Ground-truth labels were established
through manual inspection supplemented by Google Maps and street view imagery. While OSM data were initially considered, bicycle
infrastructure coverage in Atlanta proved extremely limited, with tags available for only a small fraction of road segments. Moreover,
as a crowdsourced database, OSM’s untagged segments do not necessarily indicate the absence of bicycle facilities but rather reflect
gaps in community documentation. We therefore relied on systematic manual verification to ensure completeness and accuracy of the
validation dataset. This approach enabled rigorous assessment of model performance while demonstrating that our framework can
provide more comprehensive infrastructure coverage than existing crowdsourced data sources. Of the total segments, 856 had no bike
lane, 128 featured designated bike lanes, and 18 included protected bike lanes (Fig. 6). To prevent potential data leakage and ensure
independence between training and application, road segments present in the training dataset were excluded from this application
dataset.

Using a prediction confidence threshold of 0.9 applied to the final fused class probabilities, the model classified 519 segments as
having no bike lane, 164 as designated, and 8 as protected. Among these predictions, the number of true positives was 515 for the class
of no bike lane, 99 for designated lanes, and 7 for protected lanes. These values correspond to class-wise precision scores of 0.992 (no
bike lane), 0.603 (designated), and 0.875 (protected). Although the model demonstrated excellent performance in identifying seg-
ments without bike lanes, its precision was significantly lower for segments that contained designated or protected infrastructure.

A closer examination of the misclassifications revealed several limitations. First, many errors were due to differences in visual
characteristics between the Atlanta’s road environment and the training data. For instance, several protected bike lanes in Atlanta
utilized barrier types, such as tall barricades or concrete traffic barrier, not commonly represented in the training set. Designated lanes
also exhibited low visual clarity due to faded markings, pavement cracks, or partially visible bike symbols, all of which contributed to
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misclassification. These issues were particularly evident in residential and suburban areas where maintenance appeared lower and
lane indicators were often incomplete or only partially captured in the imagery.

Second, misclassification occasionally occurred for roads with painted shoulders that resembled designated lanes but were not
formally marked as bicycle facilities. To minimize this issue, such ambiguous cases were excluded from the training dataset during
manual annotation. Only segments showing clear evidence of a designated facility such as bicycle icons, colored pavement, or
distinctive double-line markings, were retained. We also observed that these visual cues are more consistently visible near intersections
where bike lanes begin or end, while midblock segments sometimes lack explicit markings. Future data collection efforts could benefit
from incorporating imagery closer to intersections to reduce this uncertainty.

The model’s performance on bike lane classes was further constrained by the limited visual diversity within those categories in the
training dataset. Although class imbalance was addressed through upsampling, this strategy merely increased the frequency of existing
examples without introducing new design variations. Expanding the dataset to capture a broader range of design patterns, geographic
contexts, and visual conditions would improve robustness and applicability across diverse environments. Furthermore, future work
could include additional facility types such as shared-lane markings (sharrows). While this study focused on protected and designated
lanes because of their well-documented safety benefits, other facility types remain highly relevant for planners and researchers.
Additionally, this framework has the potential to extract more detailed attributes of bicycle infrastructure. For instance, by comparing
opposite-direction street view images, it may be possible to infer whether a facility supports bidirectional travel. Incorporating such
attributes would enhance the utility of automated inventories for network planning.

5. Conclusion

This study developed and evaluated a multimodal deep learning framework for classifying bike lane infrastructure through the
integration of street view and satellite imagery. Through systematic evaluation of six model configurations across three architectural
dimensions (modality concatenation stage, fusion level, and label structure), we determined that a late-stage, decision-level fusion
model with hierarchical labeling achieved optimal performance. Application to 1002 road segments in Atlanta demonstrated the
framework’s practical utility for detecting protected, designated, and non-existent bike lanes. While the model exhibited reliable
performance in identifying segments without bike lane infrastructure, classification accuracy diminished for segments containing bike
lanes. Misclassifications of protected bike lanes frequently stemmed from unfamiliar design elements, particularly barrier configu-
rations absent from the training data, whereas designated lane detection challenges primarily arose from diminished visual clarity
attributable to faded markings and pavement deterioration.

Several limitations warrant consideration. The model’s generalizability remains constrained by the geographic and typological
scope of the training dataset. As evidenced in the Atlanta case study, performance degraded when confronted with barrier configu-
rations or degraded lane markings underrepresented in the training corpus, underscoring the imperative for dataset expansion to
encompass broader design variability, surface conditions, and regional contexts. Additionally, dependence on proprietary Google data
presents accessibility challenges for cities in developing regions where coverage remains incomplete, thereby limiting the framework’s
immediate applicability in contexts where automated, cost-effective infrastructure mapping would yield the greatest benefit.

Notwithstanding these limitations, this research makes several contributions to advancing remote sensing and transportation
planning. The framework demonstrates the potential of fusing multimodal imagery to extract fine-grained urban features that are
difficult to capture using aerial or street-level imagery alone. The findings illustrate how multimodal integration can enhance the
detection of bike lane by leveraging the complementary strengths of different data sources. For transportation planning applications,
the framework provides a scalable method for documenting bicycle infrastructure, offering value for municipalities with limited re-
sources. The ability to distinguish between infrastructure types supports data-driven evaluations of safety, equity, and network
connectivity, helping planners assess the quality and distribution of existing facilities. Methodologically, the systematic architectural
comparison shows that late-stage, decision-level fusion paired with hierarchical labeling yields the most effective configuration for
multimodal bike lane classification. These insights provide planners and policymakers with a clearer understanding of how automated
systems can be designed to capture the nuances between designated and protected lanes, which is an important distinction for
evaluating safety, equity, and long-term network completeness. Ultimately, this work demonstrates the potential of multimodal deep
learning to support sustainable, evidence-based transportation planning through automated infrastructure documentation.

The trained model checkpoint with the highest classification accuracy is available on GitHub (https://github.com/GT-CURA/
complete streets/tree/main/step2_elements/bike_lane), along with instructions for running the model.
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